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Abstract – Electric power networks mustbecontinuouslymonitored. 

Suchmonitoring can beefficiently accomplished by placing phase 

measurement units (PMUs) at selected network lo-

caions.DuetothehighcostofthePMUs,their number must be mini-

mized. The problem of monitoringan electric power system by placing 

as fewphase measurement units (PMUs) in the systemaspossible is 

closely relatedtothewell-known domination problem in graphs. In 

this work, we solve the power domination problem for WK-

recursivenetworks. 
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I. INTRODUCTION 

 

A dominating set of a graph  is a set  of vertices such 

that every vertex (node) in  has at least one neighbour 

in . The problem of finding a dominating set of minimum 

cardinality is an important problem that has been extensively 

studied. The minimum cardinality of a dominating set of  is 

its domination number, denoted by . Our focus is on a 

variation called the power dominating set (PDS) problem.The 

power domination problem arose in the context of monitoring 

electric power networks. A power network contains a set of 

nodes and a set of edges connecting the nodes, also contains a 

set of generators, which supply power, and a set of loads, 

where the power is directed to. In order to monitor a power 

network we need to measure all the state variables of the net-

work by placing measurement devices. A Phase Measurement 

Unit (PMU) is a measurement device placed on a node that has 

the ability to measure the voltage of the node and current phase 

of the edges connected to the node and to give warnings of 

system-wide failures. The goal is to install the minimum num-

ber of PMUs such that the whole system is monitored. This 

problem has been formulated as a graph domination problem 

by Haynes et al. in [1]. However, this type of domination is 

different from the standard domination type problem, since the 

domination rules can be iterated. The propagation rules are 

derived from the Ohm’s and Kirchoff ’s laws for an electric 

circuit.Let the graph  represent an electric power sys-

tem, where a vertex represents an electrical component such as 

a PMU and an edge represents a transmission line joining two 

electrical nodes. A PMU measures the state variable for the 

vertex at which it is placed as well as its incident edges and 

their end vertices (these vertices and edges are said to be ob-

served). 

 

The other observation rules are as follows: 

1. Any vertex that is incident to an observed edge is observed. 

 

2. Any edge joining two observed vertices is observed. 

 

3. If a vertex is incident to a total of  edges and if 

 of these edges are observed, then all k of these edges 

are observed. 

Algorithmically, let  be a connected graph and  a subset of 

its vertices. Then we denote the set monitored by  with 

 and define it recursively as follows: 

1. (domination) 

 
2. (propagation) 

 

As long as there exists  such that 

 
set .A set  is called a power domi-

nating set (PDS) of if . The power domina-

tion number  is the minimum cardinality of a PDS of . 

A PDS of  with the minimum cardinality is called a -

set. Since any dominating set is a power dominating set, 

 for all graphs . in the 

case of cycle, path, complete graphs [1]. We say a graph  is 

power dominated by a set  if all its vertices are observed. For 

a vertex of , let  and  denote the open and 

closed neighbourhood of  respectively. For a set , let 

 and  de-

note the open and close neighbourhood of  respectively. Let 

the notation  mean that  is adjacent to .The problem 

of deciding if a graph  has a power dominating set of cardi-

nality  has been shown to be NP-complete even for bipartite 

graphs, chordal graphs [1] or even split graphs [2]. The power 

domination problem has efficient polynomial time algorithms 

for the classes of trees [1], graphs with bounded  treewidth [3], 

block graphs [4, 5], block-cactus graphs [4], interval graphs 

[2], grids [6], honeycomb meshes [7] and circular-arc graphs 

[8]. Upper bounds on the power domination number are given 

for a connected graph with at least three vertices, for a con-

nected claw-free cubic graph [9], for hypercubes [10], and for 

generalized Peterson graphs [11]. Closed formulas for the 

power domination number are obtained for Mycielskian of the 

complete graph, the wheel, the -fan and -star [12], for Car-

tesian product of paths and cycles [11, 13], for tensor and 

strong product of paths with paths [14], and for tensor product 

of paths with cycles [12].The next section deals with the power 

domination problem in  - recursive networks. 

 

I I .  W K - R E C U R S I V E  S T R U C T U R E S  

 

Thearchitectureofthe -

recursivenetworksdenotedby [15]dependsontheequa

edby [15]dependsontheequality betweentheampli-

tude andthedegree ofvirtualnodesand theexpansion-

level.The firstlevelvirtualnodeis 

ing realnodesof degree toeachotherinafully connectedcon-

figuration,andleaving linksfree.Therefore,avirtualnode is-

virtually similartorealnodeofdegree . 

ner, first levelvirtualnodesmaybeusedtoconstructasecond-
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levelvirtualnode,also ofdegree,and soon,untillevel , 

whichmaybeconstructedfrom , levelvirtual-

nodes.Amplitude ofthe levelvirtualnodeis thenumber-

ofits levelvirtualnodes,havingofcourse .The -

recursivetopologiesareidentifiedessentially bythefollow-

inganalytic relationL=logKNwhere  isthenumber ofreal-

nodes, isthenode degreeandListheexpansionlevel. 

Inthe -recursive graph , thereare cornerreal-

nodes ofdegree .Therefore, theedgeconnectivi-

ty,whichisthesmallest numberoflinksthatcanbedeletedinorder-

todisconnectthegraph,isequal to . The nodeconnectiv-

ityofthegraphisthesmallestnumber of nodesthatcanbe-

deletedinordertodisconnectthegraphandisalsoequal 

to . The diameterofthe -recursivetopologies 

isD=2
L

−1. Ingeneral,thediameterdepends onlyontheexpan-

sion levelwhateverthe nodedegreeis. 

hasK
L 

verticesand (K
L+1

−K)/2edges. 

WK(K,L)isa recursivestructure.Itconsistsof copie-

sof orK
2

copies of  and so on. 

Thus, W K (K, L) contains copies of WK(K,1). Since W 

K (K, 1) is a complete graph on  vertices. The following re-

sult is obvious. 

Theorem 2.1.Let G be . Then   = 1. 

Remark 2.2.A complete graph in can be power 

dominated if and only if 

1. at least one vertex of the complete graph belongs to the 

power dominating set or 

2. at least vertices of the complete graph are observed. 

We shall now state a result that would lead us to the lower 

bound. 

Theorem 2.3.At least vertices of each copy of 

in should belong to any power domi-

nating set. 

Proof.Assume the contrary. Let  be observed by 

taking  vertices of a copy say W1 of  in a 

power dominating set . The sub-

graphW1hasKcopiesofWK(K,1). Letusdenotethesetof ver-

tice-

sofW1inDas .Then,

.Thereare
K2

C choiceso-

felementsofXinW1.ButitisenoughtodiscussKC vari-

ouspossibilitiesaschoosingonevertexfromacopyof W(K,1)inD 

hasthesameeffectaschoosingany othervertexfromthat 

copy.Allthesepossibilitiescanbeclubbedastwocases: 

 

Case1: EverycopyofWK(K,1)inW1hasatmostonevertexinD. 

 

Case2:AtleastonecopyofWK(K,1)inW
1
hastwoormorevertices 

inD. 

Since ,thereareatleastthreecopiesof in

thatdoesnothaveavertexin . 

Then,thesecopiesof willhaveat leasttwoverticesthata-

renotobservedas anda vertex-

in chosenfromacopyof in observesallverticesfrom 

thecopyandexactlyonevertexfromtheremainingcopie-

sof in . 

Inboththecas-

es,W1isnotobservedandhencethegraphWK(K,L),contradictiont

otheassumption. 

SincethereareK
L−2

copiesofWK(K,1)inWK(K,L), thefollowing 

resultfollowsfromTheorem 2.3 

Theorem2.4.LetGbeWK-recursivenetwork. Then γp(G)≥(K−2) 

×K
L−2

 

Inordertoshowthattheboundob-

tainedissharp,weconstructapower dominatingsetofcardinality 

(K−2)×K
L−2

.The followingobservations arekeyinprov-

ingtheupperbound. 

Remark2.5.ThevertexunionofallcopiesofWK(K,i),1≤i≤Lequals 

thevertexsetofWK(K,L). WK(K,L)isobservedifeach 

copyofWK(K,i)isobservedindependently. 

Sincethelowerboundwasob-

tainedfromWK(K,2),wenextconcentrate onwhatconditionsdo-

copiesofWK(K,2)inWK(K,L)getobserved. This leadsustothe-

followingresult. 

Theorem2.6.ForanyPDSDandanycopyW1 ofWK(K,2),V(W1)is 

observedif 

1. or 

2. and

where  

Proof.Letusassumethat . 

Case1:When , place K verticesoneeachin 

Kcopieso-

fWK(K,1)inW1.Then,byRemark2.2,eachcopyofWK(K,1)isobser

vedandhenceW1. 

Case2:When place verticeso-

neeachinK−1-copiesofWK(K,1)inW1. Then byTheorem 

2.2, copiesof areobserved. 

W1hasonecopyofWK(K,1)(sayW2) thathas ofitsverti-

cesobserved. Bycondition2ofRemark 2.2,W2 willalso beob-

servedandhenceW1. 

Toprovethesecondstate-

ment,letusassume .Inthiscase,place

verticesoneeachin -

copiesof inW1.ThenbyTheorem2.2,K−2copiesof

sof inW1.ThenbyTheorem2.2,K−2copiesof
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areobserved. W1hastwocopiesofWK(K,1)(sayW2and 

W3)with twounobserved verticeseach. When 

where

,thenby Re-

mark2.2,W2andW3willbeobservedandhencethegraphW1. 

Corollory:  

Tolocateverticesof inthepowerdominatings-

et,welabeltheverticesof  as in [17] 

We observe that the above algorithm is proper since each ver-

tex in W K (K, L) receives a unique label, as at every stage of 

the algorithm only the unlabelled vertices are labelled. 

Theorem 2.7.The  

set

, for all 

for all mand , is a power dominating  

set for . 

Proof.Let us prove the result by the method of induction on L. 

Base Case: L = 3. 

This case reduces D  for the graph W K (K, 3). Let  us denote K 

copies of W K (K, 2) in WK (K, 3) as  taken 

in the anti-clockwise sense. 

In , 

, 

 , 

for all p. 

When and , 

 

When and , 

. 

When and , 

 

Similarly, When and ,  

 

and .In all these 

cases where .  Also, the 

vertex 

 +1 +j(  +K +1) of Wj +1 is observed by the vertex K +1 

+j( +K +1) of Wj  in WK (K, 3) and  thus 

 where 

 Thus,  by Theorem  2.6, all 

Wi  are observed and hence W K (K, 3). 

Case:  L  = 4.  W K (K, 4)has  three  copies of W K (K, 3). Lo-

cate  the same set of three points in three copies of W K (K, 3) 

i.e., 

 ,  for all , 

 for all  and . By induction, the set  is 

obviously a power dominating set as each copy of  

is independently dominated. 

Let  us assume  that the result  is true for .  We shall 

prove  for .  The graph  has 

three copies of . By induction, each copy is inde-

pendently resolved as we locate the same set of points in each 

subgraph  and hence the graph  is observed. 

Theorem 2.8.The set 

where 

 

is a power dominating set for 

and has cardinality 

.  That  is, (W K (K, 3)) ≤ .  

Proof.The proof is by induction on L.  When L = 3, consider 

the set  

in .  The set  satisfies the conditions  

of Theorem  2.6 and hence is a power dominating set. 

When ,  has three copies of .  

Locate the same set of three points in three copies of 

 i.e., .  

The set  is obviously a power dominating set as each copy of 

 is independently  dominated. Algorithm  this  pro-

cedure  to obtain the power dominating set for any . 

Let  us assume  that the result  is true for .  We shall  

prove  for L  = k + 1.   The  graph  has  three  

copies of .   By induction, each copy is inde-

pendently resolved as we locate the same set of points in each 

subgraph  and hence the graph  is observed. 

By Theorem  2.4, 2.7 and 2.8, we now state 

Theorem 2.9.Let G be W K - recursive network, W K (K, L), K 

≥ 3, L ≥ 3. Then  
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It is to be noted that  is Sierp´ınski graph of dimen-

sion  [16]  

Theorem 2.10.Let G be a Sierp´ınski graph of dimension  

. Then  

 

III.  CONCLUSION 

 

In  this  paper,  power domination  problem  is solved for W K 

- recursive networks and Sierp´ınski graph.  The result  has 

motivated us to believe that subgraphs  have  a  certain role in  

determining  the power  domination of a graph.  In our future 

research, we intend to focus on the relationship between the 

two. 
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